博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Django之进阶相关操作
阅读量:5121 次
发布时间:2019-06-13

本文共 17022 字,大约阅读时间需要 56 分钟。

一、QuerySet的特点

1.可切片

使用Python 的切片语法来限制查询集记录的数目 。等同于SQL 的LIMIT OFFSET 子句。

1
>>> Entry.objects.
all
()[:5]      # (LIMIT 5)
>>> Entry.objects.all()[5:10]    # (OFFSET 5 LIMIT 5)

不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。

2.可迭代

articleList=models.Article.objects.all()for article in articleList: print(article.title)

3.惰性查询

查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。

1
2
3
4
5
6
queryResult=models.Article.objects.
all
() #
not
hits
database
 
print(queryResult) # hits
database
 
for
article
in
queryResult:
    
print(article.title)    # hits
database

 一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值

4.缓存机制

每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。

在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。

请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:

1
2
print([a.title
for
a
in
models.Article.objects.
all
()])
print([a.create_time
for
a
in
models.Article.objects.
all
()])

这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它:

1
2
3
queryResult=models.Article.objects.
all
()
print([a.title
for
a
in
queryResult])
print([a.create_time
for
a
in
queryResult])

何时查询集不会被缓存?

查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存

例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:

1
2
3
>>> queryset
=
Entry.objects.
all
()
>>>
print
queryset[
5
]
# Queries the database
>>>
print
queryset[
5
]
# Queries the database again

然而,如果已经对全部查询集求值过,则将检查缓存:

from blog import models    ret = models.Article.objects.all()    for i in ret:        print(i.title)    for j in ret:        print(j.desc)   #查询一次
for i in models.Article.objects.all():        print(i)    for j in models.Article.objects.all():        print(j)   #  查询两次

 

>>> queryset
=
Entry.objects.
all
()
>>> [entry
for
entry
in
queryset]
# Queries the database
>>>
print
queryset[
5
]
# Uses cache
>>>
print
queryset[
4
]
# Uses cache
   

下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:

1
2
3
4
>>> [entry
for
entry
in
queryset]
>>>
bool
(queryset)
>>> entry
in
queryset
>>>
list
(queryset) 

注:简单地打印查询集不会填充缓存。

queryResult=models.Article.objects.all()print(queryResult) #  hits databaseprint(queryResult) #  hits database    查询两次

 备注:if queryResult  也会查询SQL。

exists()与iterator()方法

exists:

简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:

if queryResult.exists():    #SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()        print("exists...")

备注:如果用于判断有没有值,可以使用if  queryset,这样会查询出所有的数据再做判断有没有值,这样做的弊端是当数据量很大时,就会全部放到内存中,我们应该避免这样用,可以使用 if  queryset.exists():  这种用法好处时,执行SQL时会只查询一条(limit 1),从而可以解决数据量大的问题。

iterator:

当queryset非常巨大时,cache会成为问题。

处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。

objs = Book.objects.all().iterator()   # 得到一个生成器 generator# iterator()可以一次只从数据库获取少量数据,这样可以节省内存for obj in objs: print(obj.title) #BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了 for obj in objs: print(obj.title)

当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。

总结:

queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。 

中介模型

处理类似搭配 pizza 和 topping 这样简单的多对多关系时,使用标准的ManyToManyField  就可以了。但是,有时你可能需要关联数据到两个模型之间的关系上。

例如,有这样一个应用,它记录音乐家所属的音乐小组。我们可以用一个ManyToManyField 表示小组和成员之间的多对多关系。但是,有时你可能想知道更多成员关系的细节,比如成员是何时加入小组的。

对于这些情况,Django 允许你指定一个中介模型来定义多对多关系。 你可以将其他字段放在中介模型里面。源模型的ManyToManyField 字段将使用through 参数指向中介模型。对于上面的音乐小组的例子,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from
django.db
import
models
 
class
Person(models.Model):
    
name
=
models.CharField(max_length
=
128
)
 
    
def
__str__(
self
):             
# __unicode__ on Python 2
        
return
self
.name
 
class
Group(models.Model):
    
name
=
models.CharField(max_length
=
128
)
    
members
=
models.ManyToManyField(Person, through
=
'Membership'
)
 
    
def
__str__(
self
):             
# __unicode__ on Python 2
        
return
self
.name
 
class
Membership(models.Model):
    
person
=
models.ForeignKey(Person)
    
group
=
models.ForeignKey(Group)
    
date_joined
=
models.DateField()
    
invite_reason
=
models.CharField(max_length
=
64
)

既然你已经设置好ManyToManyField 来使用中介模型(在这个例子中就是Membership),接下来你要开始创建多对多关系。你要做的就是创建中介模型的实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
>>> ringo
=
Person.objects.create(name
=
"Ringo Starr"
)
>>> paul
=
Person.objects.create(name
=
"Paul McCartney"
)
>>> beatles
=
Group.objects.create(name
=
"The Beatles"
)
>>> m1
=
Membership(person
=
ringo, group
=
beatles,
...     date_joined
=
date(
1962
,
8
,
16
),
...     invite_reason
=
"Needed a new drummer."
)
>>> m1.save()
>>> beatles.members.
all
()
[<Person: Ringo Starr>]
>>> ringo.group_set.
all
()
[<Group: The Beatles>]
>>> m2
=
Membership.objects.create(person
=
paul, group
=
beatles,
...     date_joined
=
date(
1960
,
8
,
1
),
...     invite_reason
=
"Wanted to form a band."
)
>>> beatles.members.
all
()
[<Person: Ringo Starr>, <Person: Paul McCartney>]

与普通的多对多字段不同,你不能使用add、 create和赋值语句(比如,beatles.members [...])来创建关系:

1
2
3
4
5
6
# THIS WILL NOT WORK
>>> beatles.members.add(john)
# NEITHER WILL THIS
>>> beatles.members.create(name
=
"George Harrison"
)
# AND NEITHER WILL THIS
>>> beatles.members
=
[john, paul, ringo, george]

为什么不能这样做? 这是因为你不能只创建 Person和 Group之间的关联关系,你还要指定 Membership模型中所需要的所有信息;而简单的addcreate 和赋值语句是做不到这一点的。所以它们不能在使用中介模型的多对多关系中使用。此时,唯一的办法就是创建中介模型的实例。

 remove()方法被禁用也是出于同样的原因。但是clear() 方法却是可用的。它可以清空某个实例所有的多对多关系:

1
2
3
4
5
>>>
# Beatles have broken up
>>> beatles.members.clear()
>>>
# Note that this deletes the intermediate model instances
>>> Membership.objects.
all
()
[]

查询优化

表数据

class UserInfo(AbstractUser):    """    用户信息    """    nid = models.BigAutoField(primary_key=True)    nickname = models.CharField(verbose_name='昵称', max_length=32)    telephone = models.CharField(max_length=11, blank=True, null=True, unique=True, verbose_name='手机号码')    avatar = models.FileField(verbose_name='头像',upload_to = 'avatar/',default="/avatar/default.png")    create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True)     fans = models.ManyToManyField(verbose_name='粉丝们',                                  to='UserInfo',                                  through='UserFans',                                  related_name='f',                                  through_fields=('user', 'follower'))     def __str__(self):        return self.username class UserFans(models.Model):    """    互粉关系表    """    nid = models.AutoField(primary_key=True)    user = models.ForeignKey(verbose_name='博主', to='UserInfo', to_field='nid', related_name='users')    follower = models.ForeignKey(verbose_name='粉丝', to='UserInfo', to_field='nid', related_name='followers') class Blog(models.Model):     """    博客信息    """    nid = models.BigAutoField(primary_key=True)    title = models.CharField(verbose_name='个人博客标题', max_length=64)    site = models.CharField(verbose_name='个人博客后缀', max_length=32, unique=True)    theme = models.CharField(verbose_name='博客主题', max_length=32)    user = models.OneToOneField(to='UserInfo', to_field='nid')    def __str__(self):        return self.title class Category(models.Model):    """    博主个人文章分类表    """    nid = models.AutoField(primary_key=True)    title = models.CharField(verbose_name='分类标题', max_length=32)     blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid') class Article(models.Model):     nid = models.BigAutoField(primary_key=True)    title = models.CharField(max_length=50, verbose_name='文章标题')    desc = models.CharField(max_length=255, verbose_name='文章描述')    read_count = models.IntegerField(default=0)    comment_count= models.IntegerField(default=0)    up_count = models.IntegerField(default=0)    down_count = models.IntegerField(default=0)    category = models.ForeignKey(verbose_name='文章类型', to='Category', to_field='nid', null=True)    create_time = models.DateField(verbose_name='创建时间')    blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')    tags = models.ManyToManyField(        to="Tag",        through='Article2Tag',        through_fields=('article', 'tag'),)  class ArticleDetail(models.Model):    """    文章详细表    """    nid = models.AutoField(primary_key=True)    content = models.TextField(verbose_name='文章内容', )     article = models.OneToOneField(verbose_name='所属文章', to='Article', to_field='nid')  class Comment(models.Model):    """    评论表    """    nid = models.BigAutoField(primary_key=True)    article = models.ForeignKey(verbose_name='评论文章', to='Article', to_field='nid')    content = models.CharField(verbose_name='评论内容', max_length=255)    create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True)     parent_comment = models.ForeignKey('self', blank=True, null=True, verbose_name='父级评论')    user = models.ForeignKey(verbose_name='评论者', to='UserInfo', to_field='nid')     up_count = models.IntegerField(default=0)     def __str__(self):        return self.content class ArticleUpDown(models.Model):    """    点赞表    """    nid = models.AutoField(primary_key=True)    user = models.ForeignKey('UserInfo', null=True)    article = models.ForeignKey("Article", null=True)    models.BooleanField(verbose_name='是否赞') class CommentUp(models.Model):    """    点赞表    """    nid = models.AutoField(primary_key=True)    user = models.ForeignKey('UserInfo', null=True)    comment = models.ForeignKey("Comment", null=True)  class Tag(models.Model):    nid = models.AutoField(primary_key=True)    title = models.CharField(verbose_name='标签名称', max_length=32)    blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')   class Article2Tag(models.Model):    nid = models.AutoField(primary_key=True)    article = models.ForeignKey(verbose_name='文章', to="Article", to_field='nid')    tag = models.ForeignKey(verbose_name='标签', to="Tag", to_field='nid')
View Code

 

select_related

简单使用

对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化。

select_related 返回一个QuerySet,当执行它的查询时它沿着外键关系查询关联的对象的数据。它会生成一个复杂的查询并引起性能的损耗,但是在以后使用外键关系时将不需要数据库查询。

简单说,在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。

下面的例子解释了普通查询和select_related() 查询的区别。

查询id=2的文章的分类名称,下面是一个标准的查询:

1
2
3
4
5
# Hits the database.
article
=
models.Article.objects.get(nid
=
2
)
 
# Hits the database again to get the related Blog object.
print
(article.category.title)

 

SELECT    "blog_article"."nid",    "blog_article"."title",    "blog_article"."desc",    "blog_article"."read_count",    "blog_article"."comment_count",    "blog_article"."up_count",    "blog_article"."down_count",    "blog_article"."category_id",    "blog_article"."create_time",     "blog_article"."blog_id",     "blog_article"."article_type_id"             FROM "blog_article"             WHERE "blog_article"."nid" = 2; args=(2,) SELECT     "blog_category"."nid",     "blog_category"."title",     "blog_category"."blog_id"              FROM "blog_category"              WHERE "blog_category"."nid" = 4; args=(4,)
View Code

 

如果我们使用select_related()函数:

1
2
3
4
5
6
7
articleList=models.Article.objects.select_related(
"category"
).
all
()
 
 
    
for
article_obj
in
articleList:
        
#  Doesn't hit the
database
, because article_obj.category
        
#  has been prepopulated
in
the previous query.
        
print(article_obj.category.title)
SELECT     "blog_article"."nid",     "blog_article"."title",     "blog_article"."desc",     "blog_article"."read_count",     "blog_article"."comment_count",     "blog_article"."up_count",     "blog_article"."down_count",     "blog_article"."category_id",     "blog_article"."create_time",     "blog_article"."blog_id",     "blog_article"."article_type_id",      "blog_category"."nid",     "blog_category"."title",     "blog_category"."blog_id" FROM "blog_article"LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid");
View Code

 

多外键查询

这是针对category的外键查询,如果是另外一个外键呢?让我们一起看下:

1
2
article=models.Article.objects.select_related(
"category"
).get(nid=1)
print(article.articledetail)

 观察logging结果,发现依然需要查询两次,所以需要改为:

1
2
article=models.Article.objects.select_related(
"category"
,
"articledetail"
).get(nid=1)
print(article.articledetail)

 或者:

article=models.Article.objects              .select_related("category")              .select_related("articledetail")              .get(nid=1)  # django 1.7 支持链式操作print(article.articledetail)

 

SELECT     "blog_article"."nid",    "blog_article"."title",    ......     "blog_category"."nid",    "blog_category"."title",    "blog_category"."blog_id",     "blog_articledetail"."nid",    "blog_articledetail"."content",    "blog_articledetail"."article_id"    FROM "blog_article"   LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid")   LEFT OUTER JOIN "blog_articledetail" ON ("blog_article"."nid" = "blog_articledetail"."article_id")   WHERE "blog_article"."nid" = 1; args=(1,)
View Code

 

深层查询

1
2
3
4
# 查询id=1的文章的用户姓名
 
    
article=models.Article.objects.select_related(
"blog"
).get(nid=1)
    
print(article.blog.
user
.username)

 依然需要查询两次:

SELECT    "blog_article"."nid",    "blog_article"."title",    ......      "blog_blog"."nid",     "blog_blog"."title",    FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid")   WHERE "blog_article"."nid" = 1;    SELECT    "blog_userinfo"."password",    "blog_userinfo"."last_login",    ...... FROM "blog_userinfo"WHERE "blog_userinfo"."nid" = 1;
View Code

 

 这是因为第一次查询没有query到userInfo表,所以,修改如下:

1
2
article=models.Article.objects.select_related(
"blog__user"
).get(nid=1)
print(article.blog.
user
.username)
SELECT "blog_article"."nid", "blog_article"."title",......  "blog_blog"."nid", "blog_blog"."title",......  "blog_userinfo"."password", "blog_userinfo"."last_login",...... FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid") INNER JOIN "blog_userinfo" ON ("blog_blog"."user_id" = "blog_userinfo"."nid")WHERE "blog_article"."nid" = 1;
View Code

 

总结

  1. select_related主要针一对一和多对一关系进行优化。
  2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
  3. 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。
  4. 没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
  5. 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
  6. 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
  7. Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。

prefetch_related()

对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。

prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。

prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。

1
2
3
4
5
# 查询所有文章关联的所有标签
    
article_obj=models.Article.objects.
all
()
    
for
i
in
article_obj:
 
        
print(i.tags.
all
())  #4篇文章: hits
database
5

改为prefetch_related:

1
2
3
4
5
# 查询所有文章关联的所有标签
    
article_obj=models.Article.objects.prefetch_related(
"tags"
).
all
()
    
for
i
in
article_obj:
 
        
print(i.tags.
all
())  #4篇文章: hits
database
2
SELECT "blog_article"."nid",               "blog_article"."title",               ...... FROM "blog_article";   SELECT  ("blog_article2tag"."article_id") AS "_prefetch_related_val_article_id",  "blog_tag"."nid",  "blog_tag"."title",  "blog_tag"."blog_id"   FROM "blog_tag"  INNER JOIN "blog_article2tag" ON ("blog_tag"."nid" = "blog_article2tag"."tag_id")  WHERE "blog_article2tag"."article_id" IN (1, 2, 3, 4);
View Code

 

extra

extra(select=None, where=None, params=None,       tables=None, order_by=None, select_params=None)

有些情况下,Django的查询语法难以简单的表达复杂的 WHERE 子句,对于这种情况, Django 提供了 extra() QuerySet修改机制 — 它能在 QuerySet生成的SQL从句中注入新子句

extra可以指定一个或多个 参数,例如 selectwhere or tables这些参数都不是必须的,但是你至少要使用一个!要注意这些额外的方式对不同的数据库引擎可能存在移植性问题.(因为你在显式的书写SQL语句),除非万不得已,尽量避免这样做

参数之select

The select 参数可以让你在 SELECT 从句中添加其他字段信息,它应该是一个字典,存放着属性名到 SQL 从句的映射。

queryResult=models.Article            .objects.extra(select={
'is_recent': "create_time > '2017-09-05'"})

结果集中每个 Entry 对象都有一个额外的属性is_recent, 它是一个布尔值,表示 Article对象的create_time 是否晚于2017-09-05.

练习:

# in sqlite:    article_obj=models.Article.objects               .filter(nid=1)               .extra(select={"standard_time":"strftime('%%Y-%%m-%%d',create_time)"})               .values("standard_time","nid","title") print(article_obj) # 

参数之where / tables

您可以使用where定义显式SQL WHERE子句 - 也许执行非显式连接。您可以使用tables手动将表添加到SQL FROM子句。

wheretables都接受字符串列表。所有where参数均为“与”任何其他搜索条件。

举例来讲:

queryResult=models.Article            .objects.extra(where=['nid in (1,3) OR title like "py%" ','nid>2'])

整体插入

创建对象时,尽可能使用bulk_create()来减少SQL查询的数量。例如:

Entry.objects.bulk_create([    Entry(headline="Python 3.0 Released"),    Entry(headline="Python 3.1 Planned")])

...更优于:

Entry.objects.create(headline="Python 3.0 Released")Entry.objects.create(headline="Python 3.1 Planned")

注意该方法有很多注意事项,所以确保它适用于你的情况。

这也可以用在ManyToManyFields中,所以:

my_band.members.add(me, my_friend)

...更优于:

my_band.members.add(me)my_band.members.add(my_friend)

...其中Bands和Artists具有多对多关联。

转载于:https://www.cnblogs.com/zhaopanpan/p/9196195.html

你可能感兴趣的文章
下一代操作系统与软件
查看>>
【iOS越狱开发】如何将应用打包成.ipa文件
查看>>
[NOIP2013提高组] CODEVS 3287 火车运输(MST+LCA)
查看>>
Yii2 Lesson - 03 Forms in Yii
查看>>
Python IO模型
查看>>
Ugly Windows
查看>>
DataGridView的行的字体颜色变化
查看>>
Java再学习——关于ConcurrentHashMap
查看>>
如何处理Win10电脑黑屏后出现代码0xc0000225的错误?
查看>>
局域网内手机访问电脑网站注意几点
查看>>
[Serializable]的应用--注册码的生成,加密和验证
查看>>
Day19内容回顾
查看>>
第七次作业
查看>>
SpringBoot项目打包
查看>>
Linux操作系统 和 Windows操作系统 的区别
查看>>
《QQ欢乐斗地主》山寨版
查看>>
文件流的使用以及序列化和反序列化的方法使用
查看>>
Android-多线程AsyncTask
查看>>
第一个Spring冲刺周期团队进展报告
查看>>
红黑树 c++ 实现
查看>>